Circuits Worksheet

1. Three resistors, $25 \Omega, 45 \Omega$, and 75Ω are connected in series. What is the potential difference across each resistor if a current of 0.50 A passes through them? (12.5 V, 22.5 V, 37.5 V)
2. A battery dissipates 2.50 W of power in each of two 47Ω resistors connected in series. What is the potential difference of the battery? (21.7 V)
3. The current in a series circuit is 15 A . When an additional 8Ω resistor is inserted in series, the current drops to 12 A . What is the resistance in the original circuit? (32Ω)
4. What resistance must be placed in parallel with a 155Ω resistor to make an equivalent resistance of 115Ω ? (446Ω)
5. How many 4Ω resistors must be connected in parallel to create an equivalent resistance of 0.063Ω ? (64 resistors)
6. Two resistors, 42Ω and 64Ω, are connected in parallel. The current through the 64Ω resistor is 3 A . Calculate
(a) the current in the other 42Ω resistor. (4.6 A)
(b) the total power consumed by the circuit. (1459 W)
7. A coffee cup heater and a lamp are connected in parallel to the same 120 V outlet. Together, they use a total of 18 W of power. If the heater has a resistance of 600Ω what is the resistance of the lamp? (200Ω)
8. Calculate the equivalent resistance of each of the following circuits:

(c)

9. Calculate the power dissipated in the 5.0Ω resistor in the following circuit. (2.2 W)

10. If the current through the 8.00Ω resistor in the following circuit is 0.5 A , what is the current in the 9.00Ω resistor? $(2.11 \mathrm{~A})$

